-
功率器件熱設(shè)計(jì)基礎(chǔ)(三)——功率半導(dǎo)體殼溫和散熱器溫度定義和測(cè)試方法
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-11-25
-
【“源”察秋毫系列】多次循環(huán)雙脈沖測(cè)試應(yīng)用助力功率器件研究及性能評(píng)估
隨著電力電子技術(shù)的飛速發(fā)展,功率器件在電動(dòng)汽車、可再生能源、智能電網(wǎng)等領(lǐng)域的應(yīng)用日益廣泛。這些應(yīng)用對(duì)功率器件的性能和可靠性提出了更高的要求。特別是在電動(dòng)汽車領(lǐng)域,功率器件需要在高電壓、高電流和高溫環(huán)境下穩(wěn)定工作,這對(duì)器件的耐久性和可靠性是一個(gè)巨大的挑戰(zhàn)。同時(shí),隨著SiC等寬禁帶半導(dǎo)體材料的興起,功率器件的性能得到了顯著提升,但同時(shí)也帶來(lái)了新的測(cè)試需求。如何在保證測(cè)試效率的同時(shí),準(zhǔn)確評(píng)估這些先進(jìn)功率器件的性能和壽命,成為了行業(yè)發(fā)展的關(guān)鍵。
2024-11-23
-
功率器件熱設(shè)計(jì)基礎(chǔ)(四)——功率半導(dǎo)體芯片溫度和測(cè)試方法
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-11-23
-
功率器件的熱設(shè)計(jì)基礎(chǔ)(二)——熱阻的串聯(lián)和并聯(lián)
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-11-12
-
功率器件熱設(shè)計(jì)基礎(chǔ)(一)——功率半導(dǎo)體的熱阻
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-11-11
-
如何使用GaNFET設(shè)計(jì)四開(kāi)關(guān)降壓-升壓DC-DC轉(zhuǎn)換器?
在不斷追求減小電路板尺寸和提高效率的征途中,氮化鎵場(chǎng)效應(yīng)晶體管(GaNFET)功率器件已成為破解目前難題的理想選擇。GaN是一項(xiàng)新興技術(shù),有望進(jìn)一步提高功率、開(kāi)關(guān)速度以及降低開(kāi)關(guān)損耗。這些優(yōu)勢(shì)讓功率密度更高的解決方案成為可能。
2024-11-04
-
第8講:SiC外延生長(zhǎng)技術(shù)
SiC外延生長(zhǎng)技術(shù)是SiC功率器件制備的核心技術(shù)之一,外延質(zhì)量直接影響SiC器件的性能。目前應(yīng)用較多的SiC外延生長(zhǎng)方法是化學(xué)氣相沉積(CVD),本文簡(jiǎn)要介紹其生產(chǎn)過(guò)程及注意事項(xiàng)。
2024-11-04
-
遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
氮化鎵功率器件因其高速開(kāi)關(guān)能力、高功率密度和成本效益而成為市場(chǎng)的熱門選擇。然而,由于工作電壓和長(zhǎng)期可靠性的制約,這些器件的潛力并未得到充分發(fā)揮,主要在消費(fèi)電子領(lǐng)域內(nèi)競(jìng)爭(zhēng)價(jià)格。近期,隨著高壓氮化鎵器件的陸續(xù)推出,我們看到了它們?cè)诟鼜V泛市場(chǎng)應(yīng)用中的潛力。
2024-11-01
-
【泰克先進(jìn)半導(dǎo)體實(shí)驗(yàn)室】 遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
氮化鎵功率器件因其高速開(kāi)關(guān)能力、高功率密度和成本效益而成為市場(chǎng)的熱門選擇。然而,由于工作電壓和長(zhǎng)期可靠性的制約,這些器件的潛力并未得到充分發(fā)揮,主要在消費(fèi)電子領(lǐng)域內(nèi)競(jìng)爭(zhēng)價(jià)格。近期,隨著高壓氮化鎵器件的陸續(xù)推出,我們看到了它們?cè)诟鼜V泛市場(chǎng)應(yīng)用中的潛力。
2024-10-20
-
IGBT 還是 SiC ? 英飛凌新型混合功率器件助力新能源汽車實(shí)現(xiàn)高性價(jià)比電驅(qū)
近幾年新能源車發(fā)展迅猛,技術(shù)創(chuàng)新突飛猛進(jìn)。如何設(shè)計(jì)更高效的牽引逆變器使整車獲得更長(zhǎng)的續(xù)航里程一直是研發(fā)技術(shù)人員探討的最重要話題之一。高效的牽引逆變器需要在功率、效率和材料利用率之間取得適當(dāng)?shù)钠胶狻?/p>
2024-09-25
-
第4講:SiC的物理特性
SiC作為半導(dǎo)體功率器件材料,具有許多優(yōu)異的特性。4H-SiC與Si、GaN的物理特性對(duì)比見(jiàn)表1。與Si相比,4H-SiC擁有10倍的擊穿電場(chǎng)強(qiáng)度,可實(shí)現(xiàn)高耐壓。與另一種寬禁帶半導(dǎo)體GaN相比,物理特性相似,但在p型器件導(dǎo)通控制和熱氧化工藝形成柵極氧化膜方面存在較大差異,4H-SiC在多用途功率MOS晶體管的制備方面具有優(yōu)勢(shì)。此外,由于GaN是直接躍遷型半導(dǎo)體,少數(shù)載流子壽命較短,因此通過(guò)電導(dǎo)調(diào)制效應(yīng)來(lái)實(shí)現(xiàn)低導(dǎo)通電阻器件的效果并不理想。
2024-09-11
-
如何“榨干”SiC器件潛能?這幾種封裝技術(shù)提供了參考范例
隨著全球?qū)稍偕茉春颓鍧嶋娏ο到y(tǒng)的需求不斷增長(zhǎng),光儲(chǔ)充一體化市場(chǎng)為實(shí)現(xiàn)能源的高效利用和優(yōu)化配置提供了創(chuàng)新解決方案。在此趨勢(shì)引領(lǐng)下,碳化硅(SiC)產(chǎn)業(yè)生態(tài)正迅速發(fā)展,逐漸成為替代傳統(tǒng)硅基功率器件的有力市場(chǎng)競(jìng)爭(zhēng)者。
2024-09-03
- 電容選型避坑手冊(cè):參數(shù)、成本與場(chǎng)景化適配邏輯
- IO-Link技術(shù)賦能智能工廠傳感器跨協(xié)議通信實(shí)戰(zhàn)指南
- CMOS有源晶振電壓特性與精準(zhǔn)測(cè)量指南
- 有機(jī)實(shí)心電位器選型避坑指南:國(guó)際大廠VS國(guó)產(chǎn)新勢(shì)力
- 電解電容技術(shù)全景解析:從核心原理到國(guó)產(chǎn)替代戰(zhàn)略
- 意法半導(dǎo)體拓展新加坡“廠內(nèi)實(shí)驗(yàn)室” 深化壓電MEMS技術(shù)合作
- 超越視距極限!安森美iToF技術(shù)開(kāi)啟深度感知新紀(jì)元
- 英飛凌推出全新緊湊型CoolSET封裝系統(tǒng)(SiP)
- AI全景觀賽革命,海信116英寸巨幕電視+星海大模型重塑家庭綠茵場(chǎng)?
- 科技照亮銀發(fā)生活 創(chuàng)新編織幸福晚年
- 意法半導(dǎo)體攜邊緣人工緣智能方案重磅登陸新加坡半導(dǎo)體展會(huì)
- 振蕩電路不起振怎么辦?專家教你步步排查
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall