
跨分割換層是否是YES——設(shè)計先生之回流設(shè)計系列(4)
發(fā)布時間:2015-04-15 來源:楊洲 一博科技 責(zé)任編輯:sherry
【導(dǎo)讀】在PCB設(shè)計實際運用中,控制電源噪聲的關(guān)鍵就是降低電源回路的阻抗。本節(jié)讓我們來探討下我們設(shè)計中經(jīng)常遇到的麻煩問題,這種問題往往帶來的就是大量工作量的修改,我們跨分割是否允許,信號換層是否能夠接受以及如何改善它們?
承前:電源噪聲是由電流回路阻抗和瞬態(tài)電流共同作用引起的。在PCB設(shè)計實際運用中,控制電源噪聲的關(guān)鍵就是降低電源回路的阻抗。所以我們在設(shè)計過程中一定要關(guān)注電源隱藏的回路。
本節(jié):讓我們來探討下我們設(shè)計中經(jīng)常遇到的麻煩問題,這種問題往往帶來的就是大量工作量的修改,我們跨分割是否允許,信號換層是否能夠接受以及如何改善它們?
設(shè)計到后期階段如果出現(xiàn)了重要信號跨分割,那肯定就要修改優(yōu)化,如果項目密度稍微大點,我們就得整上個以天來計算的改動。在避免發(fā)生這個的時候,我們得先來分析why?同樣的對于信號換層,換到哪層更好也來分析下。
設(shè)計到后期階段如果出現(xiàn)了重要信號跨分割,那肯定就要修改優(yōu)化,如果項目密度稍微大點,我們就得整上個以天來計算的改動。在避免發(fā)生這個的時候,我們得先來分析why?同樣的對于信號換層,換到哪層更好也來分析下。
跨分割
話說不能腳踏兩只船,那在PCB設(shè)計中該如何了?跨分割到底是怎么一回事,與返回路徑有關(guān)嗎?有什么壞處?
a,我們設(shè)計時在參考平面跨了分割(以跨同一平面來解釋,如完整的地平面有一條間隙),,這使得返回路徑被迫繞道而行,返回路徑與信號路徑之間的阻抗將會比之前的加大,從而造成返回路徑上阻抗的不連續(xù)。(當(dāng)?shù)絽⒖计矫娴沫h(huán)路面積增大的時候,阻抗變大)。
b,我們從不同信號返回路徑重疊的情況分析,信號返回路徑上是會有串?dāng)_。由于這個間隙的存在,許多與之信號路徑平行的其他信號,返回時阻抗最小的路徑都是在這個間隙段,使這里成為串?dāng)_的集中點。電流的交疊是不會有串?dāng)_的,串?dāng)_來自由于信號路徑與返回路徑包成的面積增加,而形成了一個近場耦合器類似的東西。
c,我們從EMI角度上看,我們知道當(dāng)回流信號遇到不連續(xù)處時,這個不連續(xù)處就會形成一個回路,而回路面積和EMI有關(guān),這就造成了一個本不存在的EMI問題,建議改為EMC。
信號換層
信號換層無法避免,那換層時回流路徑怎么破?
a,信號換層時,最好不要改變參考層。在這種情況下,返回路徑無需換層,即信號的換層對其返回路徑?jīng)]有影響。
b,信號換層時,最好不要改變參考層的網(wǎng)絡(luò)屬性。雖然參考層發(fā)生了改變,但如果同為GND或電源屬性,可利用附近的GND或電源的過孔實現(xiàn)返回路徑的通路(這個也正是說明了換層處加地孔的原因)雖然這個過程發(fā)生了阻抗的變化,但由于過孔的尺寸較小,容性、感性寄生部分較低,過孔本身產(chǎn)生的阻抗變化可以忽略,因此對返回路徑的影響不大。如果網(wǎng)絡(luò)屬性發(fā)生了改變,,返回路徑就只能借助平面耦合電容或單板上的電源耦合電容,且兩參考層之間存在層間阻抗。同時會不可避免的產(chǎn)生一些壓降,信號發(fā)生畸變。
注意:在信號過孔附近增加的同屬性的過孔,一般要求該過孔與信號過孔的距離不要太遠(yuǎn),50mil以內(nèi)是比較合適的。同時當(dāng)很多信號換層時,主要添加多一些過孔,這些過孔同時不應(yīng)太近,避免信號回路上產(chǎn)生串?dāng)_。

c,如果換層前后兩參考層網(wǎng)絡(luò)屬性不同,那就只能盡量要求兩參考層相距較近,以減少層間阻抗和返回路徑上的壓降了。
對于設(shè)計者來說,當(dāng)然是以不跨分割,不換層為最好的。
特別推薦
- 權(quán)威認(rèn)證!貿(mào)澤電子斬獲Amphenol SV Microwave全球代理商年度大獎
- 光電傳感器:智能時代的“感知神經(jīng)元”
- 能效革命 智控未來,LED照明產(chǎn)業(yè)駛向千億級快車道
- 革命性突破!iToF技術(shù)讓3D測量觸手可及
- ST 推出 STM32MP23高性價比MPU,搭載兩個Arm Cortex-A35處理器核心
- 意法半導(dǎo)體推出車規(guī)衛(wèi)星導(dǎo)航芯片跨界賦能賽格威智能割草機(jī)
- SiC MOSFET技術(shù)賦能AI數(shù)據(jù)中心,實現(xiàn)電源轉(zhuǎn)換能效質(zhì)的飛躍
技術(shù)文章更多>>
- 從混動支線機(jī)到氫能飛行器:Vicor模塊化電源的航空減碳路線圖
- 10年壽命+零下40℃耐寒:廢物管理物聯(lián)網(wǎng)設(shè)備的電池選型密碼
- 伺服驅(qū)動器賦能工業(yè)自動化:多場景應(yīng)用方案深度解析
- 氣體傳感器選型指南:環(huán)境適應(yīng)性、成本分析與核心IC解決方案
- 瑞典森爾Senseair二氧化碳傳感器通過ASHRAE新規(guī)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
Aptina
ARM
Arrow
ASIC
ATA連接器
Atmel
Audience
Avnet
BOM
Broadcom
BTG可控硅
CCD
CEVA
Cirrus Logic
CNR
CPU
CPU使用率高
Cree
DC/AC電源模塊
dc/dc
DC/DC電源模塊
DDR2
DDR3
DIY
DRAM
DSP
DSP
D-SUB連接器
DVI連接器
EEPROM